999 resultados para nutrition accumulation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The experiment was carried out aiming to analyze the dry mass production and distribution and the content and accumulation of macronutrients in sourgrass (Digitaria insularis) plants cultivated under mineral nutrition standard conditions. Plants grew in 7-liter pots filled with sand substrate and daily irrigated with nutrient solution, being maintained under greenhouse conditions. Treatments consisted of times of evaluation (21, 35, 49, 63, 77, 91, 105, 119, and 133 days after emergence - DAE) and were arranged in a completely randomized design with four replicates. Sourgrass showed small accumulation of dry mass (0.3 g per plant) and macronutrients (3.7 mg of N per plant, 0.4 mg of P per plant, 5.6 mg of K per plant, 0.9 mg of Ca per plant, 0.7 mg of Mg per plant, and 0.3 mg of S per plant) at vegetative growth stage (< 49 DAE). Those accumulations increased mainly after 77 DAE, reaching the maximum theoretical value at 143, 135, 141, 129, 125, 120, and 128 DAE, for dry mass (12.4 g per plant), N (163.2 mg per plant), P (27.1 mg per plant), K (260.5 mg per plant), Ca (47.6 mg per plant), Mg (30.9 mg per plant), and S (13.7 mg per plant), respectively. K and N were found with higher rates and, as a consequence, they were required and accumulated in greater amounts in plant tissues of sourgrass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

细胞分裂素是一类重要的植物激素,它参与调节许多植物的生命活动过程。本文从几个方面研究了细胞分裂素的作用。 在细胞分裂素的活性测定中,通过改进尾穗蔸苋红素合成法建立了一种简便、准确的生物试法,同时还建立了根据物理化学和免疫学原理而测定细胞分裂素的HPLC和ELISA方法,使得细胞分裂素的定量更加准确。经过对上述三种方法的相互验证实验表明,同时采用二种方法可以保证细胞分裂素分析的准确和可靠。 细胞分裂素可以促进黄瓜子叶的扩张。利用离体黄瓜子叶,分析BA诱发其扩张与子叶内源细胞分裂素之间的关系,实验证明,BA能促进玉米素及其核苷的迅速积累,进而诱发子叶的扩张。上述结果还表明,黄瓜子叶可能具有合成细胞分裂素的能力。 荸荠球茎是一种贮藏器官,但实验测定发现其中含有细胞分裂素的生理活性形式——异戊烯基腺嘌呤核苷(iPA),而且合成它的前体腺嘌呤的含量也十分丰富,考虑到球茎与种子的类似之处,推测它可能做为合成细胞分裂素的一个源,而且其合成途径可能有别于植物其它组织。 农杆菌中的异戊烯基转移酶(ipt)基因是负责细胞分裂素生物合成的关键基因。将ipt基因克隆后对其启动子进行了改造,分别构建了如下三种基因:(1) ipt启动子+ipt编码区和3,区(ipt),(2)磷酸核酮糖羧化酶小亚基启动子SSU 301+ipt编码区和3,区(SSU -ipt),(3)豌豆种子特异性启动子viciln+ipt编码区和3,区(vic-ipt)。上述三种基因经农杆菌介导转化烟草,获得了16株再生植株,经Southern杂交证明其中15株的基因组上含有正常整合的ipt基因。Northern杂交表明有13株转基因烟草中的ipt基因能转录出大小正常的ipt mRNA并促进了细胞分裂素的生物合成。 实验表明,转基因烟草中ipt基因的表达受到多种因素的调控。首先启动子决定了ipt基因的表达模式,SSU -ipt基因的表达受光的诱导,黑暗中这种基因的转录完全停止,而vic-ipt基因的表达是种子特异性的,它不在烟草营养生长器官如根、茎、叶和愈伤组织中表达。第二,生长素能降低ipt基因的表达活性。第三,在整体植物的根中,存在某些反式因子,能够控制ipt基因的过量表达,这其中可能涉及到细胞内的蛋白因子、基因的甲基化作用及细胞分裂素的反馈调节等。 vic-ipt基因在烟草种子中的特异性表达导致种子内形成了一个细胞分裂素合成的源(source)。对种子中营养物质积累的研究表明,ipt基因的表达促进了种子干物质的积累,其中作用最明显的是增加种子内蛋白质的合成。转入vic-ipt基因后的烟草种子其萌发率没有显著变化,但幼苗的生长速率明显加快,这表明细胞分裂素能调节植株的生长。 通过Northern杂交检测转基因烟草中基因表达的调控,实验证明,ipt基因的表达明显抑制一组植物病理相关蛋白(PR)基因的转录活性,这组基因编码:几丁质酶,β-1,3一葡萄糖苷酶,伸展蛋白和渗调蛋白。对这些调控作用的生理学意义还有待进一步探索。 上述结果表明,在高等植物中,除了传统上认为根是合成细胞分裂素的部位之外,其它组织和器官也具有合成细胞分裂素的能力,其中合成能力最强的是一些离体组织和贮藏器官。农杆菌中的细胞分裂素生物合成基因(ipt)能够在高等植物的基因组中正常的整合和表达,并受到植物体内生理、发育等多种因素的调控,而与整体植物的正常生理过程协调一致。ipt基因的表达还能够调节植物体的生长和发育,包括种子发育时营养物质的积累、幼苗的生长和某些相关基因的表达。对上述问题的深入研究,必将促进细胞分裂素及其相关生理学和发育学研究的进展。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

当前大气CO2浓度升高是全球变化的主要趋势之一,CO2浓度升高还会引起全球变暖等其它环境问题,因而CO2浓度浓度升高对植物影响的研究已经成为全球变化领域的焦点。红桦是川西亚高山地区暗针叶林演替初期的先锋树种和演替后期的建群种,在群落演替过程中它对环境因子的响应决定红桦群落的演替进程。本文通过控制CO2浓度的气候室试验,研究了CO2浓度倍增环境下,不同密度水平红桦碳氮固定、分配可能发生的改变,并探讨了升高大气CO2浓度对群体内部竞争的影响。以期通过本研究明确川西亚高山地区代表性物种红桦对未来气候变化的响应,为今后采取措施应对气候变化、妥善进行森林管理提供理论依据和科学指导。主要研究结果如下: 1.升高CO2浓度对红桦幼苗生长的影响以及树皮、树干响应的不同 (1) CO2浓度升高显著促进红桦幼苗的生物量、株高、基茎的生长,同时也改变生物量在体内的分配格局,主要是增加根和主茎、减少叶在总生物量中的比重。(2)树皮和树干对升高CO2浓度的影响有差异,它们对CO2浓度升高的反应程度不同,但反应方向一致。 2.密度的副效应 (1) 增加种植密度对单株生物量、株高和基径的生长具有副效应,也降低升高CO2浓度对红桦生长的正效应。(2) 增加种植密度,显著增加红桦幼苗的群体生物量,从而使红桦群体固定更多的大气CO2气体。可见密度在决定红桦生物量及固碳能力方面具有重要意义。探索适合未来大气CO2浓度升高条件下植物生长的密度,对未来的森林经济生产、生态恢复具有重要意义。 3. 升高CO2浓度对红桦幼苗苗冠结构及冠层内部竞争的影响 (1) 冠幅、冠高、苗冠表面积和苗冠体积等树冠特征均受CO2浓度升高的影响而增加,但是受密度增加的影响而降低。(2) 单位苗冠投影面积叶片数(LDcpa)和单位苗冠体积叶片数(LDcv)均低于相应的现行CO2浓度处理,这主要是由于冠幅和冠高的快速生长所造成的。(3) LDcpa和LDcv的降低表明,红桦在升高CO2浓度的条件下,会作出积极的响应,从而缓解由于群体和个体生长的增加所引起的竞争压力的增加。 4. 升高CO2浓度对红桦幼苗养分元素吸收与分配的影响 (1) CO2浓度升高,植株各器官N、P含量降低,但单株N、P总吸收量均增加。红桦幼苗体内N、P浓度的下降是由于生物量迅速增加引起的稀释效应造成的。(2) CO2浓度升高,N、P向主茎和根的分配增加,向叶片的分配减少,主要是由于前者在总生物量中的比重增加,而后者减少了。(3) CO2浓度升高,氮磷利用效率(NUE和PUE)提高,氮磷累积速率(NAcR和PAcR)显著增加。而NUE和PUE的提高可以有效缓解CO2浓度升高后,亚高山和高山地区森林土壤中养分元素不足对森林生产力的限制。 5. 升高CO2浓度对红桦幼苗群体碳平衡的影响 (1) 升高CO2浓度对植物的光合作用、呼吸速率和生长均具有促进作用。(2) 土壤有机碳含量在实验前期迅速增加,后期积累速率下降。(3) 升高CO2浓度以后,土壤呼吸显著增强;土壤呼吸还具有明显的季节变化。(4) 红桦群体日固碳量受到升高CO2浓度的促进作用。结果(1)-(4)说明所研究群落的碳动态对现行的气候波动是敏感的;所研究群落在作为大气CO2气体的源-汇关系方面至少存在季节间的源汇飘移。(5)种植密度的升高显著增加了群体固碳量。 6. 升高CO2浓度对红桦幼苗生长后期叶片衰老的影响 升高CO2浓度有利于减缓红桦幼苗叶片生长季节末期的衰老。生长季节末期,随着CO2浓度的升高光合速率和可溶性蛋白含量均呈上升趋势,同时MDA(丙二醛)含量下降,保护酶SOD(超氧化物岐化酶)、CAT(过氧化氢酶)活性升高。由此说明,升高CO2浓度有利于减缓生长季节后期叶片的衰老,使叶片维持较高的光合速率,也从生理学的角度支持了本文及前人有关CO2浓度升高促进植物光合和生长的假说及结果。 The increased CO2 concentration is one of the most important problems among global changes. The increase of CO2 will also cause other environmental problems, such as global warming, etc. So the effects of elevated CO2 on plant have drawn sights of many scientists in the research field of global change. Red birch (Betula albosinensis) usually emerges as the pioneer species in initial stage and as constructive species in later stages of forest community succession of the dark coniferous forests in Western Sichuan, China. It’s response to elevated CO2 may determine the succession process of the community where it lives in. By controlling CO2 at the ambient and twice as the ambient level (ambient + 350 umol mol-1) using enclosed-top chambers (ETC), possible effects of elevated CO2 on carbon fixation and allocation under two plantation densities are investigated. The effects of elevated CO2 on competition within canopy of red birch seedlings are also observed in the present paper. We hope to make sure of the effects of elevated CO2 on the representative species, red birch. And so that, our results could provide a strong theoretical evidence and scientific direction for forest management and afforestation under a future, CO2 elevated world. The results are as fowllows: 1. The effects of elevated CO2 on growth and the different responses of wood and bark of red birch seedlings (1) Elevated CO2 increases the growth of seedling biomass, seedling height and basal diameter of red birch. It also changed the biomass allocation in red birch seedlings. The ratio of root and main stem to all biomass is increased and the ratio of leaf is decreased. (2) Tree bark and wood show different response degree but similar response direction to elevated CO2. 2. Negative effects of planting density (1) The increase of planting density showes negative effects on the individual growth of seedling biomass, seedling height and basal diameter of red birch. It also eliminates the positive effects of elevated CO2 on growth of red birch seedlings. (2) Community biomass is increased by the elevated planting density, which means that the high density red birch community could fix more CO2 than the low density one. These results show that planting density plays an important role in determining biomass and carbon fixation ability of red birch community. Thus, exploring proper planting density becomes economically important for the future, CO2 elevated word. 3. The effects of elevated CO2 on crown architecture and competition within canopy of red birch seedlings (1) Crown width, crown depth, crown surface area and crown volume are all increased under the influence of elevated CO2. (2) Leaf number per unit area of projected crown area (LDcpa) and per unit volume of crown volume (LDcv) are lower under elevated CO2. This is resulted from the stimulated growth of tree crown features. (3) The decrease of LDcpa and LDcv indicate that plants will respond forwardly to reduce the possible increase of competition resulted from stimulated growth of individual plant and collectives in conditions of elevated CO2. 4. The effects of elevated CO2 on nutrition accumulation and allocation of red birch seedlings (1) Contents of N and P decrease due to the prompt increase of biomass of plant organs caused by elevated CO2. However, their accumulations increase under elevated CO2. (2) Elevated CO2 increases the allocation of N, P to main stem but reduced its allocation to leaf for that dry weight of the former increased but the dry weight of the later decreased. (3) Using efficiencies of N, P (NUE and PUE) and their accumulation rates (NAcR and PAcR) are found to increase under elevated CO2. Soil nutrition contents are always the limiting factors for plant growth at subalpine and alpine region. The increased NUE and PUE are helpful to eliminate the nutrition limitation in this area in the future world, when CO2 concentration doubles the ambient. 5. The effects of elevated CO2 on carbon balance of red birch communities (1) Net photosynthetic rates (Pn), dark respiration rates (Rd) and growth are all stimulated by elevated CO2. (2) Content soil organic carbon increases sharply at the primary stage of experiments and then the increasing rates decrease to a low level at later stages. (3) Soil respiration rates increase significantly with the elevation of CO2 concentration. (4) The daily carbon fixations of whole community are heightened by elevated CO2. The results (1)-(4) suggest that, the community being studied are sensitive to current climate change; the studied community, as a sink of atmospheric CO2, is pool-sink alternative between seasons. (5) The carbon fixations are increased along the increase of planting densities. 6. The effects of elevated CO2 on physiological features of leaf senescences of red birch seedlings at the later stage of growing season Elevated CO2 helps to postpone the leaf senescences of red birch at the end of the growth season. CO2 enrichment increases the photosynthetic rates, contents of soluble proteins and photosynthetic pigments. And meanwhile contents of malondialdehyde (MDA) decreases and activities of superoxide dismutase (SOD) and catalase (CAT) are both increased. These results suggest that the senescences of red birch leaves are delayed by elevated CO2, which keep the photosynthetic rates at relatively high levels. Our results lend supports to hypothesis and results on stimulated photosynthetic rates and growth from both other researchers and the present paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the objective of evaluating the progress of absorption of macro and micronutrients in cauliflower cultivated in substrate, an experiment was conducted in a greenhouse at the Universidade do Estado de São Paulo, in Jaboticabal, Brazil. The experimental desing used was randomized blocks, with six treatments and five replicates. The treatments comprised times of sampling (20; 30; 40; 50; 60 and 70 days after the transplant). The composition and accumulation of the macro and micronutrients of the shoot and root were evaluated. The biggest demand of nutrient happened in the period of 60 to 70 (DAT) for macro and micronutrients. The decreasing order of the macronutrients accumulated by the cauliflower was K, N, S, P, Mg and Ca and for micronutrients Fe, Zn, B, Mn and Cu.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin A deficiency (VAD) is a serious problem in developing countries, affecting approximately 127 million children of preschool age and 7.2 million pregnant women each year. However, this deficiency is readily treated and prevented through adequate nutrition. This can potentially be achieved through genetically engineered biofortification of staple food crops to enhance provitamin A (pVA) carotenoid content. Bananas are the fourth most important food crop with an annual production of 100 million tonnes and are widely consumed in areas affected by VAD. However, the fruit pVA content of most widely consumed banana cultivars is low (~ 0.2 to 0.5 ìg/g dry weight). This includes cultivars such as the East African highland banana (EAHB), the staple crop in countries such as Uganda, where annual banana consumption is approximately 250 kg per person. This fact, in addition to the agronomic properties of staple banana cultivars such as vegetative reproduction and continuous cropping, make bananas an ideal target for pVA enhancement through genetic engineering. Interestingly, there are banana varieties known with high fruit pVA content (up to 27.8 ìg/g dry weight), although they are not widely consumed due to factors such as cultural preference and availability. The genes involved in carotenoid accumulation during banana fruit ripening have not been well studied and an understanding of the molecular basis for the differential capacity of bananas to accumulate carotenoids may impact on the effective production of genetically engineered high pVA bananas. The production of phytoene by the enzyme phytoene synthase (PSY) has been shown to be an important rate limiting determinant of pVA accumulation in crop systems such as maize and rice. Manipulation of this gene in rice has been used successfully to produce Golden Rice, which exhibits higher seed endosperm pVA levels than wild type plants. Therefore, it was hypothesised that differences between high and low pVA accumulating bananas could be due either to differences in PSY enzyme activity or factors regulating the expression of the psy gene. Therefore, the aim of this thesis was to investigate the role of PSY in accumulation of pVA in banana fruit of representative high (Asupina) and low (Cavendish) pVA banana cultivars by comparing the nucleic acid and encoded amino acid sequences of the banana psy genes, in vivo enzyme activity of PSY in rice callus and expression of PSY through analysis of promoter activity and mRNA levels. Initially, partial sequences of the psy coding region from five banana cultivars were obtained using reverse transcriptase (RT)-PCR with degenerate primers designed to conserved amino acids in the coding region of available psy sequences from other plants. Based on phylogenetic analysis and comparison to maize psy sequences, it was found that in banana, psy occurs as a gene family of at least three members (psy1, psy2a and psy2b). Subsequent analysis of the complete coding regions of these genes from Asupina and Cavendish suggested that they were all capable of producing functional proteins due to high conservation in the catalytic domain. However, inability to obtain the complete mRNA sequences of Cavendish psy2a, and isolation of two non-functional Cavendish psy2a coding region variants, suggested that psy2a expression may be impaired in Cavendish. Sequence analysis indicated that these Cavendish psy2a coding region variants may have resulted from alternate splicing. Evidence of alternate splicing was also observed in one Asupina psy1 coding region variant, which was predicted to produce a functional PSY1 isoform. The complete mRNA sequence of the psy2b coding regions could not be isolated from either cultivar. Interestingly, psy1 was cloned predominantly from leaf while psy2 was obtained preferentially from fruit, suggesting some level of tissue-specific expression. The Asupina and Cavendish psy1 and psy2a coding regions were subsequently expressed in rice callus and the activity of the enzymes compared in vivo through visual observation and quantitative measurement of carotenoid accumulation. The maize B73 psy1 coding region was included as a positive control. After several weeks on selection, regenerating calli showed a range of colours from white to dark orange representing various levels of carotenoid accumulation. These results confirmed that the banana psy coding regions were all capable of producing functional enzymes. No statistically significant differences in levels of activity were observed between banana PSYs, suggesting that differences in PSY activity were not responsible for differences in the fruit pVA content of Asupina and Cavendish. The psy1 and psy2a promoter sequences were isolated from Asupina and Cavendish gDNA using a PCR-based genome walking strategy. Interestingly, three Cavendish psy2a promoter clones of different sizes, representing possible allelic variants, were identified while only single promoter sequences were obtained for the other Asupina and Cavendish psy genes. Bioinformatic analysis of these sequences identified motifs that were previously characterised in the Arabidopsis psy promoter. Notably, an ATCTA motif associated with basal expression in Arabidopsis was identified in all promoters with the exception of two of the Cavendish psy2a promoter clones (Cpsy2apr2 and Cpsy2apr3). G1 and G2 motifs, linked to light-regulated responses in Arabidopsis, appeared to be differentially distributed between psy1 and psy2a promoters. In the untranscribed regulatory regions, the G1 motifs were found only in psy1 promoters, while the G2 motifs were found only in psy2a. Interestingly, both ATCTA and G2 motifs were identified in the 5’ UTRs of Asupina and Cavendish psy1. Consistent with other monocot promoters, introns were present in the Asupina and Cavendish psy1 5’ UTRs, while none were observed in the psy2a 5’ UTRs. Promoters were cloned into expression constructs, driving the â-glucuronidase (GUS) reporter gene. Transient expression of the Asupina and Cavendish psy1 and psy2a promoters in both Cavendish embryogenic cells and Cavendish fruit demonstrated that all promoters were active, except Cpsy2apr2 and Cpsy2apr3. The functional Cavendish psy2a promoter (Cpsy2apr1) appeared to have activity similar to the Asupina psy2a promoter. The activities of the Asupina and Cavendish psy1 promoters were similar to each other, and comparable to those of the functional psy2a promoters. Semi-quantitative PCR analysis of Asupina and Cavendish psy1 and psy2a transcripts showed that psy2a levels were high in green fruit and decreased during ripening, reinforcing the hypothesis that fruit pVA levels were largely dependent on levels of psy2a expression. Additionally, semi-quantitative PCR using intron-spanning primers indicated that high levels of unprocessed psy2a and psy2b mRNA were present in the ripe fruit of Cavendish but not in Asupina. This raised the possibility that differences in intron processing may influence pVA accumulation in Asupina and Cavendish. In this study the role of PSY in banana pVA accumulation was analysed at a number of different levels. Both mRNA accumulation and promoter activity of psy genes studied were very similar between Asupina and Cavendish. However, in several experiments there was evidence of cryptic or alternate splicing that differed in Cavendish compared to Asupina, although these differences were not conclusively linked to the differences in fruit pVA accumulation between Asupina and Cavendish. Therefore, other carotenoid biosynthetic genes or regulatory mechanisms may be involved in determining pVA levels in these cultivars. This study has contributed to an increased understanding of the role of PSY in the production of pVA carotenoids in banana fruit, corroborating the importance of this enzyme in regulating carotenoid production. Ultimately, this work may serve to inform future research into pVA accumulation in important crop varieties such as the EAHB and the discovery of avenues to improve such crops through genetic modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Finland, peat harvesting sites are utilized down almost to the mineral soil. In this situation the properties of mineral subsoil are likely to have considerable influence on the suitability for the various after-use forms. The aims of this study were to recognize the chemical and physical properties of mineral subsoils possibly limiting the after-use of cut-over peatlands, to define a minimum practice for mineral subsoil studies and to describe the role of different geological areas. The future percentages of the different after-use forms were predicted, which made it possible to predict also carbon accumulation in this future situation. Mineral subsoils of 54 different peat production areas were studied. Their general features and grain size distribution was analysed. Other general items studied were pH, electrical conductivity, organic matter, water soluble nutrients (P, NO3-N, NH4-N, S and Fe) and exchangeable nutrients (Ca, Mg and K). In some cases also other elements were analysed. In an additional case study carbon accumulation effectiveness before the intervention was evaluated on three sites in Oulu area (representing sites typically considered for peat production). Areas with relatively sulphur rich mineral subsoil and pool-forming areas with very fine and compact mineral subsoil together covered approximately 1/5 of all areas. These areas were unsuitable for commercial use. They were recommended for example for mire regeneration. Another approximate 1/5 of the areas included very coarse or very fine sediments. Commercial use of these areas would demand special techniques - like using the remaining peat layer for compensating properties missing from the mineral subsoil. One after-use form was seldom suitable for one whole released peat production area. Three typical distribution patterns (models) of different mineral subsoils within individual peatlands were found. 57 % of studied cut-over peatlands were well suited for forestry. In a conservative calculation 26% of the areas were clearly suitable for agriculture, horticulture or energy crop production. If till without large boulders was included, the percentage of areas suitable to field crop production would be 42 %. 9-14 % of all areas were well suitable for mire regeneration or bird sanctuaries, but all areas were considered possible for mire regeneration with correct techniques. Also another 11 % was recommended for mire regeneration to avoid disturbing the mineral subsoil, so total 20-25 % of the areas would be used for rewetting. High sulphur concentrations and acidity were typical to the areas below the highest shoreline of the ancient Litorina sea and Lake Ladoga Bothnian Bay zone. Also differences related to nutrition were detected. In coarse sediments natural nutrient concentration was clearly higher in Lake Ladoga Bothnian Bay zone and in the areas of Svecokarelian schists and gneisses, than in Granitoid area of central Finland and in Archaean gneiss areas. Based on this study the recommended minimum analysis for after-use planning was for pH, sulphur content and fine material (<0.06 mm) percentage. Nutrition capacity could be analysed using the natural concentrations of calcium, magnesium and potassium. Carbon accumulation scenarios were developed based on the land-use predictions. These scenarios were calculated for areas in peat production and the areas released from peat production (59300 ha + 15 671 ha). Carbon accumulation of the scenarios varied between 0.074 and 0.152 million t C a-1. In the three peatlands considered for peat production the long term carbon accumulation rates varied between 13 and 24 g C m-2 a-1. The natural annual carbon accumulation had been decreasing towards the time of possible intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomass and phosphorus allocation were determined in arsenate tolerant and non-tolerant clones of the grass Holcus lanatus L. in both solution culture and in soil. Arsenate is a phosphate analogue and is taken up by the phosphate uptake system. Tolerance to arsenate in this grass is achieved by suppression of arsenate (and phosphate) influx. When clones differing in their arsenate tolerance were grown in solution culture with a range of phosphate levels, a tolerant clone did not fare as well as a non-tolerant at low levels of phosphate nutrition in that it had reduced shoot biomass production, increased biomass allocation to the roots and lower shoot phosphorus concentration. At a higher level of phosphate nutrition there was little or no difference in these parameters, suggesting that differences at lower levels of phosphate nutrition were due solely to differences in the rates of phosphate accumulation. In experiments in sterile soil (potting compost) the situation was more complicated with tolerant plants having lower growth rates but higher phosphorus concentrations. The gene for arsenate tolerance is polymorphic in arsenate uncontaminated populations. When phosphorus concentration of tolerant phenotypes was determined in one such population, again tolerants had a higher phosphorus status than non-tolerants. Tolerants also had higher rates of vesicular-arbuscular mycorrhizal (VAM) infection. The ecological implications of these results are that it appears that suppression of the high affinity uptake system, is at least in part, compensated by increased mycorrhizal infection. © 1994 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Velvetgrass (Holcus lanatus L.), also known as Yorkshire fog grass, has evolved tolerance to high levels of arsenate, and this adaptation involves reduced accumulation of arsenate through the suppression of the high affinity phosphate-arsenate uptake system. To determine the role of P nutrition in arsenate tolerance, inhibition kinetics of arsenate influx by phosphate were determined. The concentration of inhibitor required to reduce maximum influx (V(max)) by 50%, K1, of phosphate inhibition of arsenate influx was 0.02 mol m-3 in both tolerant and nontolerant clones. This was compared with the concentration where influx is 50% of maximum, a K(m), for arsenate influx of 0.6 mol m-3 for tolerants and 0.025 mol m-3 for nontolerants and, therefore, phosphate was much more effective at inhibiting arsenate influx in tolerant genotypes. The high affinity phosphate uptake system is inducible under low plant phosphate status, this increasing plant phosphate status should increase tolerance by decreasing arsenate influx. Root extension in arsenate solutions of tolerant and nontolerant tillers grown under differing phosphate nutritional regimes showed that indeed, increased plant P status increased the tolerance to arsenate of both tolerant and nontolerant clones. That plant P status increased tolerance again argues that P nutrition has a critical role in arsenate tolerance. To determine if short term flux and solution culture studies were relevant to As and P accumulation in soils, soil and plant material from a range of As contaminated sites were analyzed. As predicted from the short-term competition studies, P was accumulated preferentially to As in arsenate tolerant clones growing on mine spoil soils even when acid extractable arsenate in the soils was much greater than acid extractable phosphate. Though phosphate was much more efficient at competing with arsenate for uptake, plants growing on arsenate contaminated land still accumulated considerable amounts of As. Plants from the differing habitats showed large variation in plant phosphate status, pasture plants having much higher P levels than plants growing on the most contaminated mine spoil soils. The selectivity of the phosphate-arsenate uptake system for phosphate compared with arsenate, coupled with the suppression of this uptake system enabled tolerant clones of the grass velvetgrass to grow on soils that were highly contaminated with arsenate and deficient in phosphate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Toxicologia), Universidade de Lisboa, Faculdade de Farmácia, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Um experimento em casa de vegetação foi conduzido entre novembro de 1995 e abril de 1996 na FCAV/UNESP, Brasil, objetivando estudar a produção de matéria seca, a distribuição e o acúmulo de macronutrientes por Solanum americanum - uma importante planta infestante de culturas anuais e perenes no Brasil. As plantas foram cultivadas em vasos de 7 L com substrato de areia, os quais foram irrigados diariamente com solução nutritiva de Hoagland & Arnon. O delineamento experimental foi inteiramente casualizado, com quatro repetições. Os tratamentos corresponderam às épocas de avaliação, em intervalos de 14 dias, iniciando-se 21 dias após a emergência (DAE). em cada avaliação, as plantas de quatro vasos foram analisadas quanto à produção de matéria seca e ao conteúdo de macronutrientes. S. americanum apresentou pequeno acúmulo de matéria seca e de macronutrientes no início da fase experimental. Esses acúmulos intensificaram-se após 77 DAE, atingindo o máximo valor teórico aos 142, 142, 164, 149, 140, 149 e 152 DAE, para matéria seca, N, P, K, Ca, Mg e S, respectivamente. K e N foram os macronutrientes acumulados em maior quantidade por plantas de S. americanum.